検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

[AIP Seminar] Talk by Prof. Adi Shamir (Weizmann Institute of Science) on "Can You Recover a Deep Neural Network From Its Answers?"

2025/01/16(木)
01:30〜03:00
Googleカレンダーに追加
参加者

79人/

主催:RIKEN AIP Public

This lecture will be held both in person at AIP open space and online by Zoom.

Title: Can You Recover a Deep Neural Network From Its Answers?
Speaker: Prof. Adi Shamir

Abstract. Billions of dollars and countless GPU hours are currently spent on training Deep Neural Networks (DNNs) for a variety of tasks. Such networks are typically made available as “black boxes” with which the public can interact. Thus, it is essential to determine the difficulty of extracting all the parameters of such neural networks when given access only to their inputs and outputs. In this talk I will use cryptographic ideas and techniques to show that for ReLU-based DNN’s, this can be done in polynomial time (as a function of the number of neurons). This attack was practically demonstrated by applying it successfully to extract all the 1.2 million parameters of an 8-layer network for classifying CIFAR10 images. In the last part of the talk I will show that it is possible to extract all the weights in polynomial time even in the hard label scenario, where instead of getting the probabilities produced by the classifier the attacker gets only the label of the most likely class.

Workship