検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

Imperfect Information Learning Team Seminar (Talk by Wei Wang, RIKEN).

2025/04/07(月)
07:00〜08:00

主催:RIKEN AIP Public

This is an online seminar. Registration is required.

【Team】Imperfect Information Learning Team
【Date】2025/April/7(Monday) 16:00-17:00(JST)
【Speaker】Wei Wang, RIKEN

Title: Weakly Supervised Machine Learning Revisited: Minimizing Supervision, Assumptions, and Practical Gaps

Abstract: Deep learning has achieved great success in recent years, and this success is based on the availability of large datasets with high quality annotations. However, this requirement may not be met in many real-world applications. Weakly supervised learning aims to learn an accurate model from incomplete, inexact, or inaccurate supervision. In this talk, I will discuss recent progress on this problem, including minimizing supervision information, data generation assumptions, and practical gaps. First, I will introduce a new classification setting, called confidence-difference classification, where we can learn a classifier using only unlabeled data pairs with a confidence difference indicating the differences in the probabilities of being positive. Second, I will introduce a new consistent approach to complementary-label learning that requires milder assumptions and shows the relationship between complementary-label learning and negative-unlabeled learning. Finally, I will present pitfalls in the evaluation process of the partial-label learning literature and our efforts for a more practical evaluation of this problem.

似たイベント

Workship