検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

[Data-Driven Biomedical Science Team Seminar]"Generative and active learning with GFlowNets for scientific discovery" Talk by Prof. Alex Hernandez-Garcia (MILA, Canada)

2025/04/28(月)
06:00〜07:00
Googleカレンダーに追加
参加者

19人/

主催:RIKEN AIP Public

This talk will be held in a hybrid format, both in person at Nagoya University, TEL Auditorium (3rd floor of EI Building), and online by Zoom.

DATE & TIME
April 28, 2025: 3:00 pm - 4:00 pm (JST)

TITLE
Generative and active learning with GFlowNets for scientific discovery

SPEAKER
Prof. Alex Hernandez-Garcia (MILA, Canada)

ABSTRACT
Science plays a fundamental role in tackling the most pressing challenges for humanity, such as the climate crisis, the threat of pandemics and antibiotic resistance. Meanwhile, the increasing capacity to generate large amounts of data, the progress in computer engineering and the maturity of machine learning methods offer an excellent opportunity to assist scientific progress. In this seminar, I would like to offer an overview of our recent work on generative modelling and active learning. In particular, the focus will be on the potential of GFlowNets as a generative model for scientific discovery. I will offer an introduction to GFlowNets and explain how we have adapted this method to incorporate domain knowledge from crystallography, physics and chemistry in the form of hard constraints, to efficiently discover new materials with desirable properties. I will also present our recent algorithm for multi-fidelity active learning with GFlowNets, designed to efficiently explore combinatorially large, high-dimensional and mixed spaces (discrete and continuous), inspired by challenges in materials and drug discovery.

Workship