検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

Deep Learning Theory Team Seminar (Talk by Leyang Wang, University College London).

2025/05/09(金)
09:00〜10:00

主催:RIKEN AIP Public

This is an online seminar. Registration is required.

【Deep Learning Theory Team】
【Date】2025/May 9 (Fri) 18:00-19:00(JST)
【Speaker】Leyang Wang, University College London, Computer Science Department,Master student

Title: Differential Parameter Inference in Exponential Family using Time Score Matching

Abstract:
This work addresses differential inference in time-varying parametric probabilistic models, like graphical models with changing structures. Instead of estimating a high-dimensional model at each time and inferring changes later, we directly learn the differential parameter, i.e., the time derivative of the parameter. The main idea is treating the time score function of an exponential family model as a linear model of the differential parameter for direct estimation. We use time score matching to estimate parameter derivatives. We prove the consistency of a regularized score matching objective and demonstrate the finite-sample normality of a debiased estimator in high-dimensional settings. Two applications will be presented: one on learning differential graphical models and the other on guiding generative models with natural gradients. If time permits, an ongoing work on diffusion distillation using a variational approach will also be presented.

Workship