検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

[96th TrustML Young Scientist Seminar] Talk by Kaizheng Wang (Columbia University) "Uncertainty Quantification for LLM-Based Survey Simulations"

2025/06/05(木)
00:30〜01:30

主催:RIKEN AIP Public

Date and Time: June 5, 2025: 9:30 - 10:30 (JST)
Venue: Online and Open Space at the RIKEN AIP Nihonbashi office
*Open Space is available to AIP researchers only

Title: Uncertainty Quantification for LLM-Based Survey Simulations

Speaker: Kaizheng Wang (Columbia University)

Abstract: We investigate the use of large language models (LLMs) to simulate human responses to survey questions, and perform uncertainty quantification to gain reliable insights. Our approach converts imperfect LLM-simulated responses into confidence sets for population parameters of human responses, addressing the distribution shift between the simulated and real populations. A key innovation lies in determining the optimal number of simulated responses: too many produce overly narrow confidence sets with poor coverage, while too few yield excessively loose estimates. To resolve this, our method adaptively selects the simulation sample size, ensuring valid average-case coverage guarantees. It is broadly applicable to any LLM, irrespective of its fidelity, and any procedure for constructing confidence sets. Additionally, the selected sample size quantifies the degree of misalignment between the LLM and the target human population. We illustrate our method on real datasets and LLMs. The talk is based on joint work with Chengpiao Huang and Yuhang Wu.

Bio: Kaizheng Wang is an assistant professor of Industrial Engineering and Operations Research, and a member of the Data Science Institute at Columbia University. He works at the intersection of statistics, machine learning, and optimization.

Workship