検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

[第97回TrustML若手セミナー】Bresson Xavier(シンガポール国立大学)講演 "Graph Transformers for Molecular Science -- Overcoming Limitations in Graph Representation Learning"

2025/06/27(金)
01:30〜02:30
Googleカレンダーに追加
参加者

78人/300人

主催:RIKEN AIP Public

Date and Time: June 27, 2025, 10:30 - 11:30 (JST)
Venue: Online and Meeting Room C at the RIKEN AIP Nihonbashi office
*Meeting Room C is available to AIP researchers only

Title: Graph Transformers for Molecular Science -- Overcoming Limitations in Graph Representation Learning

Speaker: Bresson Xavier (National University of Singapore)

Abstract: Graph Neural Networks (GNNs) have demonstrated remarkable potential in graph representation learning. Traditional GNNs rely on local message-passing mechanisms that propagate information through the graph by stacking multiple layers. However, this approach is limited by two key issues: over-squashing of information and difficulty in capturing long-range dependencies. In this work, we introduce a novel approach to address these challenges by leveraging the Visual Transformer architecture, originally designed for computer vision tasks. We present Graph ViT (Graph Vision Transformer), a new class of Graph Transformers that incorporates three critical advantages. First, Graph ViT effectively captures long-range dependencies, as shown on the long-range LRGB datasets, and mitigates the over-squashing issue, as demonstrated on the TreeNeighbour dataset. Second, it enhances memory and computational efficiency, outperforming existing methods. Third, Graph ViT exhibits high expressive power in graph isomorphism, being capable of distinguishing graphs that are 3-WL isomorphic. Consequently, this innovative architecture achieves significantly improved performance over traditional message-passing GNNs, especially in molecular science applications.

Bio: Xavier Bresson (PhD 2005, EPFL, Switzerland) is Associate Professor in Computer Science at NUS, Singapore. He is a leading researcher in the field of Graph Deep Learning, a new framework that combines graph theory and deep learning techniques to tackle complex data domains in natural language processing, computer vision, combinatorial optimization, quantum chemistry, physics, neuroscience, genetics and social networks.

似たイベント

Workship