検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

[99th TrustML Young Scientist Seminar] Talk by Jiang Wang (Nanjing University) "Heavy-tailed Linear Bandits: Huber Regression with One-Pass Update"

2025/09/12(金)
01:30〜02:30
Googleカレンダーに追加
参加者

19人/

主催:RIKEN AIP Public

Date and Time: September 12, 2025, 10:30 - 11:30 (JST)
Venue: Online
*Open Space is available to AIP researchers only

Title: Heavy-tailed Linear Bandits: Huber Regression with One-Pass Update

Speaker: Jing Wang (Nanjing University)

Abstract: Stochastic Linear Bandits (SLB) provide a fundamental framework for sequential decision making, with broad applications such as recommendation systems and close ties to the theoretical foundations of reinforcement learning. In this talk, I will present our recent progress on the Heavy-tailed Linear Bandit (HvtLB), which addresses the scenario with heavy-tailed noise, published at ICML 2025 (https://arxiv.org/pdf/2503.00419). While earlier work has established near-optimal and moment-aware regret bounds for HvtLB, existing algorithms require storing all past data and scanning it at each round, which is impractical in online scenarios. To overcome this challenge, we propose a one-pass Huber regression algorithm based on online mirror descent. Our method processes only the current data at each step, reducing the computational cost to a constant level while still achieving near-optimal, variance-aware regret guarantees. Our approach further enjoys the potential to be applied to broader decision-making scenarios involving heavy-tailed noise, such as online linear MDP and online adaptive control.

Bio: Jing Wang (https://www.lamda.nju.edu.cn/wangjing/) is a Ph.D. student in the LAMDA Group from Nanjing University, supervised by Prof. Zhi-Hua Zhou and Assistant Prof. Peng Zhao. His research focuses on online learning, bandit algorithms, and resource-aware machine learning. His work has been published at top conferences, including ICML and AISTATS. He also serves as a reviewer for conferences such as ICML, NeurIPS, ICLR, and AISTATS, as well as for the ML journal.

Workship