検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

[人工知能セキュリティ・プライバシーチーム] SafePickle: Pickleベースのファイル脅威の現状と、Pickleデシリアライゼーション攻撃に対する多層的な防御の徹底分析

2025/10/09(木)
00:00〜01:00
Googleカレンダーに追加
参加者

34人/

主催:RIKEN AIP Public

Abstract

Model sharing platforms such as HuggingFace have become central to machine learning development and deployment. However, many shared models, particularly PyTorch-based ones, are serialized using Python’s Pickle protocol—a format known to allow remote code execution upon deserialization. Despite this well-documented risk, Pickle remains prevalent, underscoring the need for effective mitigation techniques.

This paper provides a systematic security analysis of Pickle-based threats in large-scale AI model repositories. We identify two major deficiencies in existing defenses:

  1. Static Parsing Limitations

    Common static parsers fail to recognize malformed or obfuscated Pickle files, leaving many samples unanalyzed. We develop a robust parsing approach that increases successful extraction rates from 51% to 85% on real-world samples from HuggingFace.

  2. Ineffective Scanning Heuristics

    Current scanners rely on API-level whitelists or blacklists, resulting in a high false-positive rate, where over 98% of scanned files marked as unsafe are most likely safe. To address this, we propose a semantic analysis framework that leverages Large Language Models (LLMs) to classify Pickle behavior. Our method achieves 96% accuracy in detecting malicious files and reduces the false positives to 3% on flagged samples.

We propose generic methodologies to cover the identified gaps, and we advocate a multi-layered approach that combines them for maximum security.

Our findings demonstrate that current defenses are too coarse and that integrating semantic classifiers can significantly improve security without sacrificing usability. We release our tools and dataset to foster further research in secure model serialization.

About the Speaker

Daniel Gilkarov is a PhD student at Ariel University, specializing in AI security and machine learning defenses. His research explores innovative approaches to steganalysis, malware detection in AI model weights, and zero-trust architectures, with a focus on protecting models from hidden threats.

Workship