検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

[101st TrustML Young Scientist Seminar] Talk by Prof. Yisen Wang (Peking University) "Toward a Theoretical Understanding of Self-Supervised Learning in the Foundation Model Era"

2025/10/17(金)
04:30〜05:30
Googleカレンダーに追加
参加者

65人/

主催:RIKEN AIP Public

Date and Time: October 17, 2025, 13:30 - 14:30 (JST)
Venue: Hybrid
*Open Space is available to AIP researchers only

Title: Toward a Theoretical Understanding of Self-Supervised Learning in the Foundation Model Era

Speaker: Prof. Yisen Wang (Peking University)

Abstract: Self-supervised learning (SSL) has become the cornerstone of modern foundation models, enabling them to learn powerful representations from vast amounts of unlabeled data. By designing auxiliary tasks on raw inputs, SSL removes the reliance on human-provided labels and underpins the pretraining–finetuning paradigm that has reshaped machine learning beyond the traditional empirical risk minimization framework. Despite its remarkable empirical success, its theoretical foundations remain relatively underexplored. This gap raises fundamental questions about when and why SSL works, and what governs its generalization and robustness. In this talk, I will introduce representative SSL methodologies widely used in foundation models, and then present a series of our recent works on the theoretical understanding of SSL, with a particular focus on contrastive learning, masked autoencoders and autoregressive learning.

Bio: Yisen Wang is an Assistant Professor at Peking University. His research broadly focuses on representation learning, particularly on extracting robust and meaningful representations from unlabeled, noisy, and adversarial data. He has published over 50 papers at top-tier venues such as ICML, NeurIPS, and ICLR, receiving four Best Paper Awards or Runner-ups and achieving over 12,000 citations on Google Scholar. He serves as Senior Area Chair for NeurIPS 2024 and 2025.

Workship