検索条件

キーワード
タグ
ツール
開催日
こだわり条件

タグ一覧

JavaScript
PHP
Java
Ruby
Python
Perl
Scala
Haskell
C言語
C言語系
Google言語
デスクトップアプリ
スマートフォンアプリ
プログラミング言語
U/UX
MySQL
RDB
NoSQL
全文検索エンジン
全文検索
Hadoop
Apache Spark
BigQuery
サーバ構成管理
開発サポートツール
テストツール
開発手法
BI
Deep Learning
自然言語処理
BaaS
PaaS
Iaas
Saas
クラウド
AI
Payment
クラウドソフトウェア
仮想化ソフトウェア
OS
サーバ監視
ネットワーク
WEBサーバ
開発ツール
テキストエディタ
CSS
HTML
WEB知識
CMS
WEBマーケティング
グラフィック
グラフィックツール
Drone
AR
マーケット知識
セキュリティ
Shell
IoT
テスト
Block chain
知識

[AIP Distinguished Lecture] Talk by Prof. Klaus-Robert Müller (BIFOLD, Berlin / TU Berlin, ML Group / Korea University, Seoul /Max Planck Institut für Informatik, Saarbrücken)

2025/11/17(月)
06:30〜07:30
Googleカレンダーに追加
参加者

109人/

主催:RIKEN AIP Public

This talk will be held in a hybrid format, both in person at AIP Open Space of RIKEN AIP (Nihonbashi office) and online by Zoom. AIP Open Space: *only available to AIP researchers.

DATE & TIME
November 17, 2025: 3:30 pm - 4:30 pm (JST)

TITLE
How can the behavior of AI systems be more closely aligned with that of human users?

SPEAKER
Prof. Klaus-Robert Müller (BIFOLD, Berlin / TU Berlin, ML Group / Korea University, Seoul /Max Planck Institut für Informatik, Saarbrücken)

ABSTRACT
Deep neural networks have achieved success across a wide range of applications, including as models of human behavior in vision tasks.
However, neural network training and human learning differ in fundamental ways, and neural networks often fail to generalize as robustly as humans do, raising questions regarding the similarity of their underlying representations. What is missing for modern learning systems to exhibit more human-like behavior? We highlight a key misalignment between vision models and humans: whereas human conceptual knowledge is hierarchically organized from fine- to coarse-scale distinctions, model representations do not accurately capture all these levels of abstraction. We therefore propose human-aligned models that more accurately approximate human behavior and uncertainty. Interestingly, they also perform better on a diverse set of machine learning tasks, increasing generalization and out-of-distribution robustness. Thus, infusing neural networks with additional human knowledge yields a best-of-both-worlds representation that is both more consistent with human cognition and more practically useful, thus paving the way toward more robust, interpretable, and human-like artificial intelligence systems.

Workship